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Orthogonal projection, embedding dimension
and sample size in chaotic time series from a
statistical perspectivef

By B. CHENG AND H. TONG

Institute of Mathematics and Statistics, University of Kent,
Canterbury CT2 TNF, U.K.

By studying systematically the orthogonal projections, in a particular sense as-
sociated with a (random) time series admitting a possibly chaotic skeleton and
in a sequence of suitably defined L,-spaces, we describe a geometric characteri-
sation of the notion of embedding dimension within a statistical framework. The
question of sample size requirement in the statistical estimation of the said di-
mension is addressed heuristically, ending with a pleasant surprise: the curse of
dimensionality may be lifted except in the excessively stringent cases.

1. Introduction

In the study of chaos, substantial efforts have been expended on the detection
of exotic attractors from data, which may be laboratory-based, field-based or
simply computer generated (see Tong & Smith 1992; Drazin & King 1992). In
most of these studies, the focus is first and foremost on the estimation of such
summarizing invariants as the correlation dimension, the Lyapunov exponents,
the information dimension and so on. However, as argued in Cheng & Tong (1992)
(and we shall argue even more strongly later), the most natural and logical order
is to estimate the dimension of the euclidean space in which the attractor resides,
which we shall call the embedding state space, before putting the spot-light on
the attractor itself. In fact, it is increasingly recognized that the dimension of this
space (to be called the embedding dimension) has an impact on the estimation
of the correlation dimension and the Lyapunov exponents of the attractor (see
the papers cited above). Another powerful reason for not estimating first the
correlation dimension of the attractor and its like is the curse of dimensionality:
roughly kP data points are needed to yield a useful estimate of the correlation
dimension, p, of an attractor, k being a real positive constant. Indeed in one
context, Smith (1988) has advised that a sample size as astronomical as 427 is
necessary.

In the same vein, Ruelle (1990) has advanced the rule that if the slope in the
Grassberger—Procassia algorithm is measured over at least one decade one finds
necessarily

correlation dimension < 2log,, NV, (1.1)

t This paper was produced from the authors’ disk by using the TEX typesetting system.
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326 B. Cheng and H. Tong

N being the sample size. (Eckmann & Ruelle (1992) give a similar formula for
the estimation of the Lyapunov exponent.)

However, the above exponential sample size requirement for the estimation of
the correlation dimension seems to have led to some confusion in the literature.
For example, Jensen (1992) has questioned the wisdom of adopting 4 as the order
of autoregression for the annual sunspot numbers with N = 289 on the grounds
that ‘it is not possible to estimate non-parametrically a function T, : R™ — R
unless one has of the order 10™ data points’. He then concludes that ‘for the
sunspot data one has to confine oneself to m = 1,2 and perhaps m = 3. By
and large, we agree with his first statement because we have ourselves realized
the exponential sample size requirement for the estimation of 7, (Cheng & Tong
1993b). That is, the sample size requirements for the estimation of T,, and the
correlation dimensions of the attractors defined by T,, are comparable. However,
as far as the estimation of the embedding dimension is concerned, confining m to
1 or 2 is unduly pessimistic. For the moment, let us simply announce that under
general conditions, the sample size requirement for the estimation of m is not
exponential but (roughly) only quadratic in m.

The above announcement might sound too good to be true, especially for those
brought up with the curse of dimensionality. However, a moment’s reflection
should convince us that estimating m is a much less demanding task than esti-
mating either 7T}, or the correlation dimension of the attractors of T;,,. For, we can
afford to stand back from the ‘microscopic details’ of T}, and only concentrate
on discerning the ‘macroscopic clustering’ of the data around some cylinder set.
Moreover, the fact that m is integer-valued while the correlation dimension is
real-valued reinforces the point.

The rest of the paper is organized as follows. In §2, we describe cylinder sets
associated with appropriate orthogonal projection of a time series. In § 3, we in-
troduce a distance function over the cartesian product N x IN as a measure of
the ‘goodness of fit’ of nonlinear autoregression (NLAR) models of different or-
ders. This formalizes the macroscopic clustering mentioned earlier. This distance
function leads, in §4, to a natural loss function with which consistent estima-
tion of the embedding dimension may be obtained. Section 5 addresses the issue
of sample size requirement. Section 6 reports some simulation results. Section 7
gives some concluding discussions.

2. Projections and cylinder sets
Let {X,} be a discrete-time stationary time series with EX? < co. Let
E[Xt’Xt—la s 7Xt——d]

denote the conditional expectation of X, given (X;_1,...,X;_4). Define the resid-
ual variance by

0'2(d) = E[Xt —E[Xt|Xt_]_,...,Xt_d]]2. (2.1)
Define the generalized partial autocorrelation function by
¢(d) = {1 - o*(d +1)/0*(d)}"/2. (22)

Definition 2.1. {X,} is a nonlinear autoregressive process of order dy, in
short NLAR (dp), if 3 a non-negative integer dy < oo such that ¢(dy — 1) # 0

Phil. Trans. R. Soc. Lond. A (1994)
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Orthogonal projection, embedding dimension and sample size 327

and ¢(d) = 0 for all d > do. If no such finite dy exists, then {X,} is said to be a
nonlinear autoregressive process of infinite order, or NLAR (00).
For the space R™, 7 > 1, define the metric || || by

“ X-Y ||: {(xl —y1)2+-~+(w7—y7)2}1/2, (2'3)

where X = (:L'l,...,mT)T_and Y = (y1,...,y-)T. For the space R"*2, we define
two types of projection P and P by

PX =(z1,...,2r41)" (2.4)
and
PX = (z9,...,%r12)7, (2.5)
where
X = (z1,...,T,42)T € R™T2 (2.6)

For two random vectors X = (Xi,...,X,)" and Y = (Y3,...,Y,,)7T, define the
conditional expectation of X given Y by

E[X|Y) = (E[X,[Y), B[X,|Y], .., B[X,[Y). (2.7)
Let Yt(d) = (X441, Xty Xt—1,.-.,X4_q)T. Then the conditional expectation
E[Byvt(d)‘Xt—ly oo 7Xt—d] == (E[XtIXt—h e 7Xt—d]7 Xt—l: L) 7Xt—d)T

= (Fd(Xt—lv"-aXt—d)th—lv‘--vXt—d)Tv (28)

where Fy(X;_1,...,X:—q) denotes the conditional expectation of X, given X,_;,
X
ooy Np_d.

Lemma 2.1. (Projection Lemma). {X,} is a nonlinear autoregression (d,)
if and only if Fy,_y # Fy, a.s. and F; = Fy, a.s. for d > d,.

Proof. Trivial. [ ]

Remark 2.1. Let Eid) denote the difference X; — Fy(X;_1,..., X;—4). Then we
have

PY Y = (Fy(Xy_q, - s Xoea) Xocry oo, Xoma) T+ (612,0,...,007,  (2.9)

which is a point in the phase space R%!. The larger d is, the more structure
has the dynamic associated with the function F,;. However, using R4, d > d,,
yields no further information about the structure of the dynamic associated with
F,, than using R%*!,

Example 2.1. Consider the stochastic logistic map
Xt = aXt_l(l — Xt—l) + Et (0 < (e < 4) (210)

Here
Y = (Xesr, Xo, Xo1)™,  E[PY,V| X, 1] = (F(Xem), Xeon)™.

The mapping F; : X;_; — X, in phase space R? is a parabola. In phase space

R3, we have @ r
Yt = (Xt+laXt7Xt—17Xt—2) )

E[PY®|X,_1, Xi_0) = (Fa(Xs—1, Xo—2), Xe1, Xi_2)".

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

A

\\ \\

A \
Y
P

A

a
L\
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

P
/\ \\

A

7 9

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

328 B. Cheng and H. Tong
F (X1, X,o)

t-1

/

X =2

Figure 1. The mapping Fy : (X;—1, X;—2)" — X; in phase space R®.

Comparing the dynamic defined by F, in phase space R® with that defined by
F, in phase space R?, we can clearly see the cylinder set structure. We shall see
that cylinder sets indicate redundant information.

3. Distance function and embedding dimension

Let Z\¥ = (X,_1,..., X,_q) and recall that E[X,|Z”] is denoted by Fy(Z{*).
Define

Lo(ZP) = {F(Z{")|F is measurable on R? such that E|F(Z{¥)|> < co}.

Then
Lo(Zh) € La(Z) C - C La(Z{) C -+

and Fd(Zt(d)) is the orthogonal projection of X; in EQ(Zt(d)). For integers 0 < d; <

ds, we have (dy) (@) (da)

Fu, (Z:™) € Lo(Z:™) C Lo Z,7)

and

Fy (Zt(d2)) € £2(Zt(d2))'

2

Therefore we may consider the closeness between Fy (Z{*) and Fy,(Z{*) in
£2(Z{™)) by

Aldr,dp) = E[Fy, (Z,)) ~ Fin(Z")]P. (3.1)
Notice that F} is uniquely determined once d is given. Thus A(.,.) is well defined
and A(dy,d,) is the (squared) distance between the orthogonal projection of X,

in £o(Z{*)) and that in £,(Z{*).

Definition 3.1. The time series {X,} is said to have embedding dimension dj
(do = 1) if and only if

(1) A(d do) 7é 0 for all d< d(),
() A(d,do)=0 forall d>do.

Phil. Trans. R. Soc. Lond. A (1994)
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Proposition 3.1.
i) AY/2(.,.) is a properly defined distance function on N x N, i.e.
AY2(dy)dy) = AV3(dy, dy ),
AY2(d,d) =0,
AV?(dy,ds) < < AY2(dy,dy) + AY?(dy, dg).
(i) If for each d > 1, F; has bounded first partial derivatives on R¢, then
A(d2,d1) XX C|d2 - 11,
where c is a constant.
(111) For dl < d2 < d3,
A(dy, d3) < A(dy, d3).
That is for fixed ds, A(d,d3) is a decreasing function in d.
(iv) For any d; < d, we have

A(dl, dg) = 0'2(d1) - 0'2(d2). (32)
(v) az1 Ald,d +1) < oo.
(vi) There are infinitely many d for which
A(d,d+1) < k/d,
where K is a constant.
(vii) Vd < D < 00,3kp, 0 < kp < 00, such that
A(d,d+1) < kp/d.

Proof.

(i) The first two assertions are obvious. The third assertion follows from the
Minkowski’s inequality. Without loss of generality, let d; < ds. If dy < dy, then
from (iii) we have A(d,,d3) < A(dz,d;) and the assertion is true.

There are two cases left: dy > ds > d; and ds > d, > d;. For the former case, the
assertion follows from (iii). For the latter case, the assertion follows from (iv).
(ii) Suppose that d; < dz. Then

A(dy,dy) = E{Fy,(Z{*) — E[F(2{")|z{*)]}2.
Let ¢ =Fy,(Z*),0,...,0).
S —

dy—d;
Obviously, ¢ € L(Z{*). Since E[F,,(Z{*)|Z{*"] is the orthogonal projection
of Fdz(Zt(d2)) in ﬁz(Zfdl)), we have

A(d1,d3) < E[Fg,(Z0") — (]* = BlG(a}, 1) Xi—ty—1 + - + G(,) Xea )%,

where G(z?) denotes the partial derivative of Fy, with respect to the jth compo-
nent and evaluated at z}. Now,

2
dz
> G(a:;f)Xt_j] < const. x E

Jj=d1+1

i Gz(“’;)th—j}

j=di+1
< const. X (d2 - dl),

and hence (ii) is proved.

Phil. Trans. R. Soc. Lond. A (1994)
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330 B. Cheng and H. Tong
(iii)
A(dz, ds) = E[Fy, (Zi*) = E[Fa,(2()| 2],
Since Fy, (Z\*) € Ly(Z{*) and E[F,, (2{%)|Z{*] is the orthogonal projection
of Fy,(Z{*)) in L4(Z{*), therefore

(iv) A(ds, ds) < B[Fyy (2(™)) = Fu,(Z))]? = Aldy, dy).

A(dy,d2) = E[{X, — Fa, (Z{*"))} — {X, — Fi, (2{*)}]?
= B[e®)] + Blef®]? - 2B[ef®e(®)]
However,
E[€§d1)8£d2)] E[e(dz){g(dz) + FdZ(Z(dz)) F, (Z(dx))}] — E[ggdz)]z
and hence the result.

(v) Define _F (Zt(d)) _ (Z(d+1))

It is easy to check that for d#d
E[egdl)egd)] =0.

We have therefore the following orthogonal decomposition
E[.Xt|Xt_]_] — E[-thXt—laxt——Z’- . Ze(d).

It follows from this and the finiteness of EX? that

Z E [e(d)

This implies that o0
> A(d,d+1) < oo

d=1
(vi) If there are only finitely many d for which
A(d,d+1) =0(1/4d),
then 3 a d* and a constant C' > 0 such that Vd > d*
A(d,d+1) > C/d.
This implies that
iA(d,d—i— 1) > ) A(d,d+1)>C Y (1/d) =
d=1 d>d* d>d

This is a contradiction and therefore (ii) is proved.
(vii) Trivial.

Phil. Trans. R. Soc. Lond. A (1994)
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Note that the bound in (vi) is almost sharp because, for example,

> 1 =1
5 <00 and

dzz:z d((In(d)))? d; i
where € > 0.

Note that for continuous parameters such as the bandwidth parameters in
kernel smoothing, we may use the euclidean norm as an appropriate distance
function for parameter (e.g. the bandwidth) choice. However, for many discrete
cases, the euclidean norm is found to be unsuitable. For example, Akaike (1974)
has used instead the Kullback—Leibler information to construct a suitable distance
function for order determination. For our case, we have obtained an appropriate
distance function, namely A!/2(.,.) on N x N, based on the projection of the
skeleton from a low dimension to a high dimension as described in § 2. Proposition
3.1(ii) reveals the relation between A(.,.) and the euclidean norm.

Suppose that henceforth { X;} is bounded (cf. Chan & Tong 1994). Let d, > d;.
We write

An(dy,dy) = 0% (dy) — o (d2), (3.3)

where

o%(d) = (N —r+1)7'2(ef”), (3.4)
the summation extending over ¢ > r and r being a positive integer > max(d;, dz).
Trivially, FAN(dy,d2) = A(dy, d2).

Proposition 3.2.

(a) The embedding dimension and the order of autoregressive models of { X}
coincide.

(b) Let dy (= 1) be the embedding dimension for {X,}. Then the following
hold:

(i) if d < dy then An(d,dy) # 0 except for finitely many N;

(11) ifd 2 do then AN(do,d) =0.

Proof. (a) This is just a simple corollary of Proposition 3.1(iv).
(b) For d > do,

Fy(2,") = Fi,(Z).

Therefore,

d di
0 = e,

and thus (ii) is proved.
For d < d,, if for all but finitely many N

AN(d, do) = O,
then, letting N — oo, we have, by any standard ergodic theorem,
0= IJim An(d,dy) = 0*(d) — 0*(do) = A(d, dy).
This contradicts the definition of embedding dimension. Hence, (i) is proved. W

Phil. Trans. R. Soc. Lond. A (1994)
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332 B. Cheng and H. Tong
4. Loss functions for estimations of the embedding dimension

The squared distance function A(.,.) as defined by (3.1) naturally suggests the
following loss function as a measure of goodness of fit

ASE(d) =N"! iv:[Fd,N(Zt(d)) — Fy (202, (4.1)

t=1

where d; is the embedding dimension and Fy, N(Zt(d)) is the Nadaraya—Watson

kernel estimate of E[X;|Z\”] based on the observations (X1, ..., Xy). Loss func-
tions based on similar motivation have been used by Akaike (1974) and Shibata
(1980) for the case where F' is linear. Manipulations of U-statistics as in Cheng
& Tong (1992, 1993a) establish the following theorem. (Details of the proof are
similar to the references just cited and are therefore omitted.)

Theorem 4.1. Under the same conditions as in Theorem 1 of Cheng & Tong
(1992),

ASE(d) = Ay(d, do) — {2a(d)A(d, do) — B(d)o (d) H(NhG x) ™ + 0p(( NhZ’Nz_l))’
4.2
where

N
An(d,do) = N7 Y {Fu(Z() = Far(Z))?,
t=1

A(d, do) = B{Fu(Z{V) = Fun(Z(*)Y ) £(2(7),
a(d) = {k(0)}*,

i) = { [ #an)

and where f is the probability density function of Z¥ | k is the kernel (function)
as defined in Cheng & Tong (1992) and hgn is the bandwidth of the kernel
(previously denoted as B(N) in Cheng & Tong (1992)).

In a sense, the above result gives an affirmative answer to the question raised
by one of us (B.C.) in his discussion of Hall & Johnstone (1992).

Theorem 4.2. Under the same conditions as in Theorem 4.1,
dim. P{d=d,} =1,

where d is the minimizer of ASE(d).

Proof. We imitate the proof of Theorem 2 of Cheng & Tong (1992).
_For d < d, ASE(~d) is dominated by Ax(d, dp), which is non-zero. For d > d,
An(d,dy) = 0 and A(d, dy) = 0. Therefore,

NhiN{ASE(d) — ASE(dy)} = c(d) + op(1),
where ¢(d) > 0. The conclusion of the theorem follows immediately. |

Phil. Trans. R. Soc. Lond. A (1994)
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5. Sample size requirement for consistent estimation of embedding
dimension

ASE(d) is useful for theoretical discussion but it involves the unknown dy. To
make the notion of distance practically useful for the determination of embedding
dimension, we need to remove dy and one way to do this is by a comparative
approach. Returning to the basic squared distance function A(.,.), we may solve
the problem systematically by noting that Part (iv) of Proposition 3.1 together
with Proposition 3.2 suggests an obvious consistent estimate of A(d;, ds), d; < ds,
namely

A(dy,d;) = RSS(dy) — RSS(dy), (5.1)
where, as in Cheng & Tong (1992, eqn (2.5)) but setting W(z) = 1 and assuming
boundedness for the time series),

RSS(d) = (N —r+1)7 S {X, — Fy n(2{9))2. (5.2)

the sumation extending over ¢t > r and 13’,17 ~ is the kernel estimator of Fj.

We now appeal to some results in Cheng & Tong (1992, 1993a). Before doing
so, we need to first of all simplify conditions (a)—(0) of Theorem 1 of their paper
in 1992 for convenience. Specifically, we retain conditions (a)—(7), and replace the
rest by the existence of bounded first partial derivatives of F} for each d and

(G B =0(8), 0<B<1;
(k") hain € Hyn = [aN‘(l/(2d+1))_5, bN‘(l/(2d+1))+5],
where a and b are arbitrary real positive constants, £ is any real positive constant
strictly less than {2(d+1)(2d+1)}~*. The detailed justification is available in the
Technical Report no. UKC/IMS/S93/6a. We shall refer to the above simplified
conditions collectively as Condition B.
From Theorem 3 of Cheng & Tong (1992), we have for each d > 1 and hgn €
Hyn
RSS(d) = o} (d){1 — (20(d) — B(d))/Nh y} + 0p(1/Nhg4).  (5.3)
Choose, for explicitness,
hay = N-Y(@d+1),
and write Nhg y = N7 where n(d) = (2d + 1)/(d + 1). Note that (5.1) and
(5.3) yield, for general d; and dj,
A(dl, dz) = AN(dl, dz) + OP(N_—I/Z).
By standard arguments, we have
AN(dl, dz) == A(dl, dz) + OP(N_1/2).
Now, let dy denote the embedding dimension. Then we have from (5.3)

A(do,do + 1) = RSS(dy) — RSS(dy + 1)
= o%(do) — 0% (do + 1) — 0% (do){20:(do) — B(do)} N ~H/7(de)
+ 02(do + 1){2a(do + 1) — B(dg + 1)} N~/n(do+1)
+ 0 (NTH1)) o (N7H/m(do+ D)), (5.4)

Phil. Trans. R. Soc. Lond. A (1994)
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However, from Proposition 3.2,
0'12\7(d0) - 012V(d0 + 1) == AN(do,dO + 1) =0.

Now NVt - N1 oo as N — oo,

implying that N-1/nldo) — o(y=1/n(do+1)y,

Hence, we have proved the following theorem.

Theorem 5.1. Under Condition B and the boundedness of the time series,
A(do,d() + 1) = O'IZV(do + 1){2a(d0 + ].)
— B(do 4+ 1)} N~/nldoF1) 4 OP(N—l/ﬂ(dO‘i‘l)). (5.5)

We now use Theorem 5.1 to throw some light on the sample size requirement
for a consistent estimation of dy. The derivation will be heuristic. The embed-
ding dimension is characterized by AY/2(dy,d, + 1), which measures the distance
between the projection of the skeleton Fj, in R%*! and the skeleton Fy ;. This
was summarized in Lemma 2.1 and Proposition 3.2. Since A'/? is unknown, we
use its consistent estimate A'/2, Then Proposition 3.1(v)—(vii) suggests that for
each d it is reasonable to set

A(d,d +1) = A(d,d + 1) + O,(N~'/?) ~ const./d + O,(N~V/?). (5.6)
However, Theorem 5.1 yields
A(do, do + 1) = const. x p?(de) N~1/1(do+1) 4 o (N~—1/n(do+1)) (5.7)

where p?(dy) = o%(dy)/var(X;), the normalized dynamic noise variance. There-
fore, combining (5.6) and (5.7), we have up to O,(N'/2)

N % (dop®(do)/ k)" @+ < {dop®(do)/k}*. (5.8)
We will discuss the constant x and the term O,(N'/2) in the next section. Cheng

& Tong (1992) have proved that by relying on a penalized form of An(d,d + 1)

and A(d,d+ 1), namely the CV criterion (the definition will be recalled in (6.2)),
a consistent estimate of dy may be obtained. Note that the difference between
the CV criterion (or more precisely {CV(d) — CV(d + 1)}) and A(d,d + 1)
is O,(1/(Nhg y)), which is only o,(N~*/2). Hence, as a practical guidance we
may offer the advice that for useful estimation of the embedding dimensions
the sample size requirement is bounded by a constant multiple of {(embedding
dimension) x (normalized dynamic noise variance)}?. First, note the presence of
the dynamic noise variance. This is in contrast to the results for the estimation
of correlation dimension obtained by Smith (1988) and Ruelle (1990), which deal
with the noise-free case. Next, by far the more significant is the lifting of the
curse of dimensionality! This also throws substantial light on the ‘better-than-
originally-expected’ simulation results reported in Tong (1994) and Yao & Tong
(1994). Of course, the curse stays if we replace const./d in (5.6) by (const.)=¢.
However, Proposition 3.1(v)—(vii) suggests that the latter is excessively stringent.
In fact, the same stringency will lead to the same curse even in the linear case,
which is discussed in the next section.
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By now, the case for determining the embedding dimension first before focus-
ing on the attractors is clearly overwhelming not only on grounds of logic but
also statistical soundness. Once the embedding dimension is determined, or even
better once a parsimonious set of stochastic regressors is determined using, for
example, the approach of Cheng & Tong (1992) and Yao & Tong (1994), we can
set about searching for exotic attractors within this set. We can then face the hor-
rendous task of map reconstruction and correlation dimension estimation, etc.,
with perhaps a better chance. Of course, for these, the curse of dimensionality
returns now unless parametric models are used, but then the perennial problem
of subjectivity returns.

We now summarize some of our simulation results with a view to suggesting
some preliminary empirical guidance for sample size requirement in the estimation
of embedding dimension.

6. Simulations

Notice that the requirement of sample size given by formula (5.8) is bounded
by a constant multiple of {(embedding dimension) x (normalized dynamic noise
variance)}?, which is independent of the forms of the skeleton. As a typical il-
lustration of our simulations with d > 1, we have used the following nonlinear
models:

X; =01X, 1+ (-0.5+0.2exp[-01X}? NX; g+e€, d=1,2,..., (6.1)

where {¢;} are independent random variables with mean zero and variance 0.1.
Following Cheng & Tong (1992), for each d,, we estimate dy consistently by
minimizing the cross-validation criterion with respect to d:

CV(d) = (N —r+ 1) Y { X, — Fun,—o(Z{V)), (6.2)

where deN,_t(Zt(d)) is the leave-one-out estimator of Fy at Z\* (see Cheng & Tong
(1992) for details). In our simulations, h € Hyy with h = ¢ x N~Y/24+D, For
different d and N, the constant ¢ was adjusted between 1 and 10. In principle, a
data-driven bandwidth may be preferred but the computations involved would be
quite excessive relative to the computing power at our dispoal. Nevertheless our
random checks suggest that the results are unlikely to be fundamentally different
from those summarized in table 1. We set the true orders at 4, 8, 11 and 13. For
each sample size N, CV(d) was searched over d from 1 to 20 and the estimated

order, dov, was given by
doy = arg min {CV(d)}.

1<d<20

We used the NAG library (GO5DDF and GO5CBF) to generate independent sam-
ples of size N and 100 replications were generated for each d. All computations
were run in a SUN SPARC 2 workstation. The results of the simulations are
summarized in the following tables.

Now, we define the frequency of ‘success’ for the true order d using sample size
Na FREQN(d) say, by

#(dov = d) + #(dov = d + 1)

FREQy (d) = 0 .
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336 B. Cheng and H. Tong
Table 1. Frequencies of estimated order (true order d =4,8,11,13)

true order d = 4 true order d =8  true order d =11 true order d = 13

A A A A
7 ~ 7 N 7 Y

dov N =100 300 500 100 500 850 100 500 1000 550 750 1250

1 3 0 0 21 0 0 18 0 0 3 0 1
2 0 0 0 8 0 0 4 0 0 1 0 1
3 3 0 0 5 0 0 1 1 0 2 0 0
4 31 58 91 0 0 0 5 0 0 0 0 1
5 8 14 4 2 0 0 2 0 0 1 0 0
6 6 8 1 1 0 0 8 0 0 1 0 1
7 6 5 0 1 0 0 1 0 0 1 0 0
8 9 3 0 23 60 81 1 0 0 0 0 0
9 5 1 0 12 18 14 1 0 0 0 0 0
10 3 0 0 7 5 5 0 0 0 0 0 0
11 4 2 0 6 5 0 20 60 86 1 0 0
12 4 3 1 3 5 0 13 14 11 0 0 0
13 3 4 0 6 1 0 4 14 1 56 57 88
14 0 0 1 0 2 0 2 6 1 23 31 7
15 2 1 0 1 0 0 6 2 0 4 8 1
16 6 1 1 3 2 0 2 1 0 5 2 0
17 1 0 0 1 2 0 1 1 0 0 2 0
18 1 0 0 0 0 0 2 1 0 0 0 0
19 3 0 0 0 0 0 2 0 0 2 0 0
20 2 0 1 0 0 0 7 0 0 0 0 0

Then, as a typical example, from table 1, FREQg,,(4) = (91 + 4)/100 = 95% =
0.95.
If we define the sample size requirement for order d, N,.q(d), by

FREQy,, (a)(d) > 95%,

i.e. there is at least 95% ‘success’ when sample size Nyeq(d) is used, then from
tables 1-4, we know that

Nreq(4) = 500; Nyeq(8) = 850; (6.3)
Nieg(11) = 1000;  Nyoq(13) = 1250. (6.4)

From Proposition 3.1(i) we know that A!/? is a distance function and if we

bound A/2(d,d + 1) by 1 — 95% = 5% = 0.05, i.e. bounded by the ‘failure rate’,
then formula (5.8) becomes

Nreqld) = No + {dg?(d) [}, (6.5)

where we simply take Ny and 7 as constants, note that p*(4), p?(8), p*(11) and
p*(13) are all approximately 0.1 and k = (0.05)2. We may interpret N, as the
‘baseline’ sample size, which seems to be related to the term O,(N'/2) in (5.8).
Since p?(d)/k = 40, we obtain

Nyeq(d) = Ny + {40d}", (6.6)
Since Nyeq(4) = 500 and N,.q(8) = 850, it is easy to see that N, is between 120
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and 240 (we allow £50 oscillation here) and n ~ 1.12. This leads to the formula
Nieq(d) = [120,240] + {40d}"*2, (6.7)

where [120, 240] means some integer between 120 and 240. Now we use this for-
mula to predict the sample size requirements for d = 11 and d = 13. We get

Nyeq(11) = [120,240] 4 {40 x 11}"'% = [1033, 1153,

Nieq(13) = [120,240] + {40 x 13}"1? = [1221,1341].

These rough-and-ready arguments seem to give quite encouraging results by
reference to those in (6.4). Generally we would propose the empirical formula

Nieq(d) = No + {vd}", (6.8)
where n < 2 and
v = p?(d)/[failure rate’]?.
Inverting (6.8) gives us an analogue of Ruelle’s formula (1.1):

VN x (‘ailure rate’)?
normalized dynamic noise variance

embedding dimension < (6.9)
We suggest that the denominator be estimated (albeit roughly) by fitting a linear
model of low order first or by the so-called ‘noise floor’ of a principal component
analysis (Broomhead & King 1986). Other methods have also been suggested (see,
for example, Szpiro 1993). It is interesting to note that for the annual sunspot
numbers, if we are prepared to tolerate a failure rate of 20 — 25% and accept the
normalized dynamic noise variance at 15% (many reported parametric models
for the data set have a lower value), then formula (6.9) gives an upper bound
of about 6. The cross-validatory choice of order 4 by Cheng & Tong (1992) has
a normalized dynamic noise variance of 15% , which is consistent with a failure
rate of about 20%.

Using eqn (7) of Hannan & Quinn (1979), we may deduce that for the linear
autoregressive model,

A(dy,do + 1) ~ p*(do) InIn(N)/N. (6.10)
Following the same derivation as (5.7), we get
p*(do) InIn(N)/N = k1 /do. (6.11)

Repeating the same arguments as before we may then obtain an empirical formula
analogous to (6.3) but with n = 1, leading to the formula:

N x (‘failure rate’)?

normalized dynamic noise variance

order of linear autoregression < (6.12)

7. Discussion

Our approach to the detection of chaos in real time series in the absence of
any substantive theory is quite different from those often found in the literature
of the physical sciences. Let us summarize our position briefly. As indicated in
Tong (1990), Cheng & Tong (1992) and Chan & Tong (1994), we use the class of
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nonlinear autoregressive models as our basic framework and start by estimating
the order of the autoregressive model for the data at hand by the cross-validation
approach of leaving-k-out. We often set k¥ = 1 but for over-sampled data we
might prefer to set k¥ much greater than 1 (cf. Cheng & Tong 1993b). We are
now convinced that the sample size requirement is normally not excessive and
an empirical formula is available for its evaluation. Indeed, a parsimonious set
of stochastic regressors may be identified by using an optimal subset selection
based on the cross-validation approach as confirmed in Yao & Tong (1994). We
may then perform tests for linearity with respect to the selected regressors using
an assortment of those described in Tong (1992, ch. 5) for example. If linearity
is rejected, then the next job is the fitting of an appropriate nonlinear function
of the selected regressors. For this a number of techniques are avaiable and they
fall roughly into two groups: local function approximation and global function
approximation. The former includes the threshold models of Tong (1990) and
their younger relatives due to Casdagli et al. (1991) and Lewis & Stevens (1991),
and others; the latter includes the polynomial autoregressive models (see Cox
1977; Chan & Tong 1994) and others. Casdagli et al. (1991) gives some details.
It is probably fair to say that map reconstruction using noisy data is still an
open problem. At present, which function approximation/map reconstruction we
use for noisy data is often a trade-off between the curse of dimensionality and
subjectivity.

Once a model has been fitted, we may examine its skeleton (= signal) with
the aim of detecting chaos by evaluating its correlation dimension, Lyapunov
spectrum, etc. Fortunately the curse of dimensionality does not necessarily apply
here. In short, we prefer to place chaos detection within the context of signal
extraction, the signal being the skeleton which may be a limit point, a limit cycle
or a strange attractor.

This research was partly supported by an SERC grant under the Complex Stochastic Systems
Initiative.
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Discussion

R. J. BHANSALI (Department of Statistics and Computational Mathematics, Uni-
versity of Liverpool, U.K.). Professor Tong has given a bound for the sample size
for obtaining a reliable estimator of the embedding dimension. It seems to me,
however, that one should perhaps attempt also to improve the performance of
the estimation procedure so as to ensure that it works better for small samples
of the size often encountered in practice. He has described a cross-validation
approach which leaves one observation out at a time. In the context of model
selection, Stone (1977) has examined relationship between Akaike’s information
criterion, AIC, and this version of the cross-validation approach and established
their asymptotic equivalence. There has recently been some work on extending
the standard cross-validation approach in which k& > 1 observations are deleted;
thus Zhang (1993) has considered this approach to model selection and exam-
ined its relationsip with the FPE and AIC criteria of Bhansali & Downham
(1977) and Akaike (1979). I appreciate that the authors are considering a differ-
ent and more complex problem, but feel that one should perhaps draw on the
developments occurring in cognate areas so as to improve the current estimation
procedure. Perhaps the authors could comment on the relevance of the multifold
cross-validation approach for the particular problem they consider.

H. ToNG. Sample size is a fundamental consideration of chaos study of real data;
this is the problem on which our paper has focused. However, Dr Bhansali’s com-
ments seem to address issues beyond the scope of our present paper, although
the general answer to many of which may be found in our papers listed in the
references. As is the case with most statistical techniques, there is always room
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for improvement, but we are unclear as to which aspects he has in mind. (We
are, of course, aware of his references, especially his numerous contributions to
the problem of order determination in the case of linear models.) For example,
we have elsewhere (Cheng & Tong 1992) proved that, under general conditions,
minimizing a sensibly penalized residual sum of squares (RSS) yields a consis-
tent estimator of dy in the context of non-parametric nonlinear autogression of
bounded time series. This was a surprising result! By contrast, a similarly penal-
ized RSS, such as the FPE or the AIC referred to by Dr Bhansali, generally leads
to an inconsistent estimator in the context of linear autoregression. The ‘secret’
lies with the kernel, which helps us in a similar way as the windows in spectral
estimation (see Tong 1994). In this respect (but not necessarily others), his cited
references will probably not induce improvement by positive examples.

It is clear to us that we are into a different ball (or rather cylinder) game.
Finally, Dr Bhansali might also like to refer to Cheng & Tong (1993b) for an
example of the leave-more-than-one-out-approach.

P. M. ROBINSON (London School of Economics, U.K.). Have the authors es-
tablished any results on the limiting distribution theory of their estimates? This
would be of value in assessing the variability of the estimates in practice.

I think the authors’ approach of estimating d is a good one. My paper (Robinson
1989) presents an alternative approach. There I introduced, and gave theoreti-
cal justification for, a class of statistical tests which, in the present setting of
nonlinear autoregressions, can be used to test the null hypothesis that d takes a
specified valud dy, versus alternatives d > dgy. It is assumed that the process is
[-mixing with suitable additional restrictions. The statistic avoids the stochastic
denominator involved in the Nadaraya—Watson kernel regression estimate.

H. TonG. To Professor Robinson’s second point, we would mention that Yao &
Tong (1994) have suggested a way of avoiding the ‘zero-problem’ of the stochastic
denominator involved in the Naderaya—Watson estimator, as well as in its locally
linear extension. His question is quite pertinent. First, we should point out that
when considering the (limiting) distributional theory for dcy, we should abandon

the use of the euclidean distance in view of the integer nature of dy and &CV, and
hence the conventional forms of the central limit theorem and the large deviation

results. In place of the euclidean distance, we suggest that A(.,.) is a sensible
metric. In an unpublished manuscript, we have shown asymptotically

Pldoy = do] < max(1 — t,,1 — to), (D1)
where t,, is the ‘tail probability (of under-fitting)’ corresponding to
N(—VNA(d, do), )

and t, is the ‘tail probability (of over-fitting)’ corresponding to N'(—+v/'NBa?(do)+
V,X) with A and ¥ being constants depending on d, only and N denoting the
sample size. Note the role played by A(.,.) in the above. Some may argue that
the sample size requirement for embedding dimension estimation is a function of
the ‘tail probabilities’, namely ¢, and to. The above result (D 1) suggests that (i)
this reduces to a function of A(.,.) for which we have suggested what seems to
us the very reasonable bound of 1/d; (ii) since t, and ¢, are in general nonlinear
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functions of A(.,.) (involving A~?), it is much more difficult to ‘control’ ¢, and
to than A(.,.).

A. KLECZKOWSKI (Department of Plant Sciences, University of Cambridge,
U.K.). Embedding dimension for time series has been studied by Sauer et al.
(1991). The required dimension is usually lower than the Takens estimate of
2d + 1. The latter is needed to correctly represent details of some parts of the
attrdctor, where the trajectory is highly entangled. Are their results relevant to
the paper? Is it possible, by using similar arguments, to further reduce the sample
size requirement, if we limit our interest to gross patterns of the attractor?

H. TonG. Our answer to his first question is ‘yes’ because the embedding di-
mension, as we have defined it, is bounded below by twice the ‘fractal’ dimension
and our kernel estimate of the skeleton may be viewed as a low-pass filter. Our
answer to his second question is ‘unlikely’ because our approach is already one of
seeking out the gross patterns of the attractor via the geometric concept of the
cylinders.
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